ВОРОШИЛОВ ЮРИЙ АРКАДЬЕВИЧ

РАЗРАБОТКА ТЕХНОЛОГИИ ПРОИЗВОДСТВА ПРЕПАРАТА МОЛИБДЕН-99 НА ФГУП «ПО «МАЯК»

Специальность: 02.00.14 – Радиохимия

Автореферат диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в ФГУП «ПО «Маяк» Научный руководитель: Бетенеков Николай Дмитриевич, доктор химических наук, профессор, профессор кафедры радиохимии и прикладной экологии Физикотехнологического института ФГАОУ ВО «Уральский федеральный университет им. первого Президента России Б.Н. Ельцина» Официальные оппоненты: Рисованный Владимир Дмитриевич, доктор технических наук, профессор, научный руководитель по физико-энергетическому блоку АО «Наука и инновации» Зыков Михаил Петрович, кандидат химических наук, заведующий отделением изготовления радиофармацевтических лекарственных препаратов ФГБУ «Северо-Западный федеральный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России Ведущая организация: ФГБУ «Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук» Защита состоится «31» октября 2018 года в 14 часов на заседании диссертационного совета Д 201.007.03 на базе Акционерного общества «Радиевый институт им. В.Г. Хлопина» по адресу: 197101, Санкт-Петербург, ул. Ренгена., д. 1. С диссертацией можно ознакомиться в библиотеке АО «Радиевый институт им. В.Г. Хлопина» и на сайте www.khlopin.ru. Автореферат диссертации разослан «__» сентября 2018 года.

Д.Л. Мялочкин

Ученый секретарь

диссертационного совета

ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Прикладное значение изотопа ⁹⁹Мо определяется получением из него радионуклида ^{99m}Тс, который в течение последних 40 лет остается наиболее широко используемым в ядерной медицине радионуклидом. Это объясняется практически идеальным сочетанием его ядерно-физических свойств с возможностью ежедневного получения радионуклида из генератора непосредственно в клинике и синтеза большого количества препаратов.

В настоящее время мировое потребление этого радионуклида составляет около 10 тыс. Ки ⁹⁹Мо в неделю. Получаемый непосредственно в клиниках с помощью генератора, заряженного ⁹⁹Мо, ^{99m}Тс применяют в более чем в 80 % радиодиагностических процедур. Поэтому производство данного радионуклида остается крайне актуальной задачей, а продукция имеет на рынке устойчивый спрос с постоянным трендом к повышению последнего.

В связи с этим уже более 30 лет на ФГУП «ПО «Маяк» проводился поиск оптимального способа наработки 99 Мо из облученных урановых мишеней (блоков). Изначально разработчики реализовали технологическую схему на основе сорбционных процессов. Однако окончательный вариант технологии долго не могли выбрать. В итоге к началу 2000-х годов существовал вариант технологической схемы, включающий стадию растворения блока и три последовательных сорбционных цикла на основе сорбентов КРФ-20т-60 (КРФ), алюмогеля (Al_2O_3) и твердого экстрагента (ТВЭКСа - силикагеля, импрегнированного Д2ЭГФК).

Данная технология была реализована на установке «Молибден» (далее - уст. «М») цеха производства радиоактивных изотопов в 90-х годах. Результаты опытных операций были не совсем удачными. Проблемы возникали на стадии растворения блока, где происходили потери целевого компонента, на третьем цикле, где использовали Д2ЭГФК-ТВЭКС самостоятельного изготовления, требовавший контроля качества перед каждой операцией. В связи с этим выход ⁹⁹Мо и его качество были весьма нестабильны и установка была остановлена на длительную реконструкцию.

В 2002 году, в связи с выводом из эксплуатации реактора в ГНЦ РФ - ФЭИ им. А.И. Лейпунского (ФЭИ) и возникшим дефицитом 99 Мо в России, на ФГУП ПО «Маяк» вновь встал вопрос о доработке технологии, пуске уст. «М» и поставки 99 Мо в проблемный период в ФЭИ.

Остановка в мае 2009 г. исследовательского реактора NRU в Канаде, обеспечивающего больше половины мировой потребности в радиоактивных изотопах медицинского назначения вызвала резкую нехватку медицинских изотопов во всем мире, что подстегнуло продолжение работ по организации производства 99 Мо на ФГУП «ПО «Маяк» в 2010 г.

Цель работы. Исходя из вышеизложенного, целью настоящей работы являлась разработка технологии производства 99 Мо на основе существующей на ФГУП «ПО «Маяк» уст. «М», позволяющей нарабатывать препарат 99 Мо фармакопейного качества с приемлемым технологическим выходом.

Для достижения поставленной цели необходимо было решить следующие научные задачи:

- 1. Выбор и обоснование массообменного процесса для реализации отдельных стадий переработки раствора облученного блока, концентрирования целевого компонента и его аффинажной очистки, а также технологической схемы производства препарата ⁹⁹Мо на ФГУП «ПО «Маяк» в целом.
- 2. Поиск и исследование новых доступных сорбционных и/или экстракционных материалов, обеспечивающих наиболее полное выделение ⁹⁹Мо и очистку его от сопутствующих стабильных и радиоактивных примесей. Выбор оптимальных материалов.
- 3. Разработка способа реализации выбранных массообменных процессов на существующем оборудовании уст. «М», с минимально возможными доработками.
- 4. Проведение комплексной проверки разработанных переделов и всей технологической схемы на стендовых установках и оборудовании уст. «М» с использованием модельных растворов и реальных технологических продуктов (растворов облученных блоков).
- 5. Проверка окончательного варианта технологии на уст. «М» с наработкой препарата ⁹⁹Мо, подтверждение его качества при пробной зарядке генераторов ^{99m}Тс.

Научная новизна работы:

- 1. Исследованы сорбционные и экстракционные свойства ряда массообменных материалов по отношению к Мо и сопутствующим стабильным и радиоактивным примесям, присутствующим в растворе облученного уранового блока.
- 2. Изучены и предложены оптимальные условия проведения стадий переработки раствора облученного блока, концентрирования и аффинажной очистки ⁹⁹Мо с использованием выбранных массообменных процессов.
- 3. Разработан и проверен состав нового экстракционно-хроматографического материала для селективного извлечения ⁹⁹Мо из раствора облученного уранового топлива.
- 4. Выявлен синергетный эффект экстракционной смеси Д2ЭГФК и ТБФ по отношению к урану и антагонистический эффект по отношению к сопутствующим примесям Y, Eu, Al и Hg.

Практическая значимость работы:

- 1. Подобраны эффективные неорганические сорбенты и ионообменные смолы для извлечения Мо из азотнокислого раствора облученного уранового блока, концентрирования и очистки данного целевого компонента и предложены варианты реализации процессов с их использованием в производстве.
- 2. Разработан и испытан экстракционный вариант процесса выделения, концентрирования и очистки Мо. Показана возможность реализации процесса на каскаде центробежных экстракторов с вынесенными приводами, в том числе в режиме рефлаксирования Мо в составе его реэкстракта через головной экстрактор.
- 3. Разработана и реализована стадия сублимационной очистки Мо с переводом компонента в виде триоксида молибдена (MoO₃) в газовую фазу и его последующего улавливания.

- 4. Предложена технологическая схема производства ⁹⁹Мо на базе существующей на ФГУП «ПО «Маяк» уст. «М». Для реализации технологии потребовалось обновить и модернизировать внутрикамерное оборудование, внести незначительные изменения в основное технологическое оборудование, расположенное в каньоне.
- 5. Проведена промышленная наработка концентрата ⁹⁹Мо и его поставка в течение августа сентября 2003 года в ФЭИ для зарядки генераторов ^{99m}Тс в период останова реактора в ФЭИ. В данный период генераторы ^{99m}Тс поставлялись в клиники России.
- 6. Продемонстрирована возможность выделения ⁹⁹Мо по вновь разработанной технологии с получением препарата, соответствующего требованиям зарубежных производителей. Качество препарата подтверждено в ФЭИ при пробной зарядке генераторов ^{99m}Tc.

На защиту выносятся:

- 1. Результаты исследований сорбционных и экстракционных свойств массообменных материалов по отношению к Мо, U и сопутствующих стабильных и радиоактивных примесей. Найденные условия для реализации технологического процесса.
- 2. Прошедшие экспериментальную проверку стадии выделения, концентрирования и аффинажа Мо.
- 3. Результаты опытно-промышленных испытаний разработанной технологии производства ⁹⁹Мо.
 - 4. Разработанная технологическая схема производства препарата ⁹⁹Mo.

Личный вклад автора. Автор в течение 15 лет принимал непосредственное участие в исследованиях, проводимых в направлении разработки и оптимизации технологии производства ⁹⁹Мо на ФГУП «ПО «Маяк», в проработке основных технических решений по дизайну внутрикамерного оборудования уст. «М», в практической реализации разработанной технологической схемы на производстве, а также в проведении опытных операций по подтверждению работоспособности итоговой технологии.

Апробация работы. Результаты работы представлены в виде докладов на 16 конференциях, из которых: IV Российская конференция по радиохимии «Радиохимия - 2003» (Озёрск, 2003); Всероссийская конференция «Актуальные проблемы физической химии твёрдого тела» (Екатеринбург, 2005); V Российская конференция по радиохимии «Радиохимия-2006» (Дубна, 2006); VII Интернациональный симпозиум по технецию и рению (Москва, 2011); Российская научно-техническая конференция «Актуальные проблемы радиохимии и радиоэкологии» (Екатеринбург, 2011); VII Российская научно-техническая конференция по радиохимии «Радиохимия - 2012» (Димитровград, 2012); I Российская конференция по медициской химии «МеdChem Russia-2013» (Москва, 2013); II Международная научно-техническая конференция «Актуальные проблемы радиохимии и радиоэкологии» (Екатеринбург, 2014).

Публикации. По теме диссертации получено 4 патента, опубликовано 5 печатных работ в журналах, рекомендуемых ВАК.

Структура и объём диссертации. Диссертационная работа состоит из введения, литературного обзора, экспериментальной части, заключения, списка литературы из 95 наименований. Материал работы изложен на 179 страницах печатного текста, включает 45 рисунков и 72 таблицы.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность разработки технологии производства ⁹⁹Мо, сформулированы цель и задачи, определены научная новизна и практическая значимость работы, перечислены положения, выносимые на защиту.

Раздел 1 содержит обзор литературы по теме диссертации. В ней указана область применения радионуклида ⁹⁹Мо, рассмотрены основные его производители. Представлены методы наработки радионуклида. Проанализированы литературные данные о поведении молибдена в водных растворах. Описаны применяемые для выделения молибдена массообменные процессы и реализованные на их основе технологические схемы выделения ⁹⁹Мо. В итоге проведенного обзора литературных данных обоснована актуальность темы и сформулированы задачи исследования.

Раздел 2 включает экспериментальную часть и состоит из пяти подразделов.

В первом подразделе, представляющем методическую часть, указаны основные физико-химические характеристики использованных в исследованиях массообменных материалов и реагентов. В работе изучены сорбционные свойства 27 образцов сорбентов импортного и отечественного производства, свойства экстракционных систем на основе Д2ЭГФК, ТБФ в углеводородном разбавителе. Описаны методики подготовки массообменных материалов к работе и проведения статических и динамических экспериментов. Представлены методики расчета характеристик сорбционных и экстракционных материалов, параметров технологических процессов, позволяющих судить об эффективности их применения. Кратко описаны применявшиеся в работе аналитические методики и приборный парк для проведения измерений. Даны методы статистической и математической обработки экспериментальных данных.

Подраздел 2 экспериментальной части содержит результаты лабораторных экспериментов по оптимизации исходной базовой технологии и итоги опытно-промышленных операций наработки препарата ⁹⁹Мо на уст. «М».

Эксперименты по оптимизации технологии включали выбор варианта химического вскрытия блока, доработку процессов извлечения Мо и U на катионите КРФ применительно к первому и третьему сорбционным циклам, поиск методов снижения загрязнения десорбата Мо второго сорбционного цикла алюминием за счет растворимости Al_2O_3 , а также проработку возможности сокращения количества сорбционных циклов с целью упрощения технологического процесса.

В заключение лабораторных исследований проведены комплексные эксперименты, целью которых являлась проверка всей технологической схемы выделения Мо, а также определение условий для ее реализации на существующем оборудовании уст. «М». Размеры ис-

пользуемых в экспериментах сорбционных колонн соответствовали существующему на уст. «М» оборудованию в масштабе 1:10. В результате были уточнены основные параметры данного варианта технологического процесса (таблица 1).

Таблица 1 – Уточненные параметры технологического процесса

Стония произоор	Параметры процесса								
Стадия процесса	Состав раствора	V, л (к.о.) ¹⁾	Q, к.о./ч ²⁾	t, °C 3)					
Азотнокислое растворение блока									
Растворение	8 моль/л HNO ₃ , Hg(NO ₃) ₂	8	_	105					
Промывка 1	1 моль/л HNO ₃	1	_	_					
Промывка 2	2 моль/л NaOH	2	_	100					
1	сорбционный цикл (объем сорбента	КРФ - 0,6 л)							
Сорбция	3-4 моль/л HNO ₃ , 25 г/л Al, 1,3 г/л U, 650 Ки ⁹⁹ Мо, ПД	9 (15)	10	50 - 60					
Промывка 1	3 моль/л HNO ₃	(30-40)	20	50 - 60					
Промывка 2	H ₂ O	(15-20)	25	50 - 60					
Десорбция Мо	0,16 моль/л Gly, pH = 5	4 (7)	5	50 – 60					
Десорбция U	0,6 моль/л Na ₂ CO ₃ (либо ОЭДФК)	(30)	10	40 - 60					
2 сорбционный цикл (объем Al ₂ O ₃ - 0,2 л)									
Сорбция	Десорбат, подкисленный до pH < 3,5	6 (30)	1,5 – 5	25					
Промывка 1	H ₂ O	(6)	_	25					
Десорбция Мо	1 моль/л NaOH	1 (5)	6	25					
3	сорбционный цикл (объем сорбента I	КРФ - 0,02 л)							
Сорбция	Десорбат, подкисленный до 2 –	1,6 (80)	10 - 15	50 – 60					
	4 моль/л HNO ₃								
Промывка	3 моль/л HNO ₃	(10)	10 - 15	50 - 60					
Десорбция Мо				50 - 60					
Примечания: 1) Объем раствора; 2) Расход через колонну; 3) Температура.									

Для реализации и проверки в промышленных условиях отработанного на данном этапе варианта технологии было использовано существующее технологическое оборудование уст. «М» (рисунок 1).

Технологический процесс осуществляли следующим образом. Растворение блока Л2-К проводили в аппарате-растворителе AT-011 в режиме цельнокислотного растворения, либо двухстадийным методом щелочно-нитратного вскрытия оболочки блока и кислотного растворения керна. При необходимости переработки двух блоков за операцию данную стадию повторяли. После чего аппарат-растворитель последовательно промывали растворами HNO₃ и NaOH.

Полученный азотнокислый раствор мишени подавали на первый цикл переработки, реализованный на сорбционной колонне AT-041 с катионитом КРФ, при этом 99 Мо, U и часть других радионуклидов сорбировались на катионите. Далее колонну последовательно промывали раствором HNO₃ и водой. С катионита Мо десорбировали раствором 0,16 моль/л глико-

левой кислоты, после чего подкисленный HNO₃ до pH<3,5 десорбат 99 Мо передавали на второй цикл очистки с использованием сорбционной колонки AT-081, заполненной Al₂O₃. После сорбции колонку с Al₂O₃ промывали водой и осуществляли десорбцию Мо раствором NaOH. Полученный щелочной десорбат, раскисленный HNO₃, передавали на третий сорбционный цикл, где использовали колонку AT-082 с катионитом КРФ. После промывки насыщенного сорбента раствором HNO₃ проводили десорбцию Мо азотнокислым раствором с добавкой H_2O_2 .

Полученный десорбат 99 Мо упаривали до влажных солей, при этом происходило разрушение H_2O_2 . Сухой остаток растворяли в 0,5 моль/л растворе HNO₃, либо в 0,3 моль/л растворе NaOH. Итоговый раствор являлся готовым препаратом 99 Мо.



Рисунок 1 - Принципиальная аппаратурная схема уст. «М» (исходный вариант)

После получения готового препарата проводили десорбцию радионуклидов с колонны AT-041. Так, десорбцию радиоиода осуществляли раствором NaOH, U - раствором углекислого натрия, 95 Zr и 95 Nb - раствором щавелевой кислоты. Затем регенерировали катионит.

С целью доработки технологии и определения качества получаемого препарата на уст. «М» проводили опытные операции по наработке препарата ⁹⁹Мо. Продолжительность операций изменялась в пределах от 35 до 88 ч (очевидно, что данный показатель влиял на фактический выход ⁹⁹Мо в конечный продукт). Технологический выход ⁹⁹Мо на каждой из стадий процесса (растворение, I, II, III сорбционные циклы и стадия подготовки готового препарата), с учетом распада, составил: 91 %,83 %, 85 %, 72 % и 76 %, соответственно. Общий выход целевого компонента от расчетного содержания в блоке изменялся от 20 % до 58 %.

Фактическая активность Мо в конечном препарате (на момент анализа) при переработке одного блока составила от 30 до 125 Ки, на сдвоенных операциях (при переработке двух блоков) – от 100 до 330 Ки.

По инициативе ФЭИ в 2003 года на уст. «М» проводили промышленные операции по наработке препарата ⁹⁹Мо, который отправляли в г. Обнинск для изготовления генераторов ^{99m}Тс и дальнейшей поставки их в клиники России. Всего проведено 9 промышленных операций, наработку препарата осуществляли по ранее отработанной в ходе опытных операций технологической схеме.

Результаты, характеризующие эффективность извлечения целевого компонента на промышленных операциях, представлены в таблице 2. Как видно из указанных данных, средний технологический выход 99 Мо на сорбционных циклах составил 93 %; 91 % и 84 %, соответственно. А общий выход в конечный продукт составил около 80 %, что соответствовало около 400 Ки 99 Мо на время отправки препарата.

Анализ готового препарата на соответствие с ТУ 95 2535-94 (далее - ТУ) проводили в лабораториях ФГУП «ПО «Маяк» и ФЭИ. Результаты анализа некоторых партий поставленного препарата представлены в таблице 3. В верхней строке таблицы указаны требования ТУ. Подчеркиванием обозначены значения, превышающие требования ФЭИ.

Таблица 2 - Результаты промышленных операций по наработке ⁹⁹Мо для поставки в ФЭИ

Параметр, стадия про-	Показатели процесса на операции от:								
цесса (сорбент)	4.08	11.08	18.08	25.08	01.09	08.09	15.09	22.09	29.09
Длительность, ч 1)	44	44	45	44	36	40	44	43	41
A, Ku ²⁾	1299	1305	1291	1303	1320	1332	1373	1420	1451
I цикл (КРФ)	96,7	97,3	89,2	86,5	76,0	97,2	100	100	89,9
II цикл (Al ₂ O ₃)	93,2	100	100	98,2	100	97,6	40,7	89,1	97,6
III цикл (КРФ)	96,1	74,1	86,5	95,8	79,7	80,1	77,5	100	64,8
Упаривание	100	92,8	100	97,0	100	100	100	81,8	100
Итоговый выход, %	87	71	94	79	83	79	46	94	86
Примечания: 1) Продолжительность операции;									

²⁾ Расчетная активность ⁹⁹Мо в мишени на начало переработки.

Таблица 3 – Качество наработанного в ходе промышленных операций препарата ⁹⁹Mo

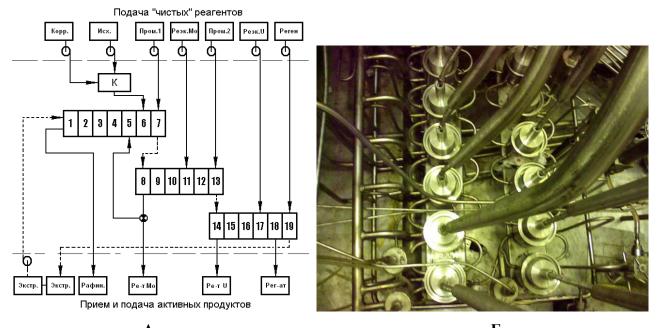
Номер	⁹⁹ Mo,	Содержание радиоактивных примесей, Ки/Ки 99Мо, % Содержание стабильны						ьных					
пар-	$\frac{100}{5 \text{ k/cm}^3}$		γ			β			примесей, мг/л				
тии	DK/CM	¹³² Te	¹⁰³ Ru	^{131}I	Другие	Sr ⁸⁹	Sr ⁹⁰	α	Mn	Fe	Cu	Al	Pb
	Требования ТУ												
	$\geq 3,7 \cdot 10^{10}$	<4·10 ⁻³	< 5·10 ⁻³	< 5·10 ⁻³	<5·10 ⁻³	<6·10 ⁻⁵	<1.10-6	<1.10-9	≤1,0	≤0,5	≤0,1	≤1,0	≤0,1
	Результаты анализа готового препарата												
04/03	$2,4\cdot10^{11}$	$<4.10^{-3}$		<4·10 ⁻³		<6·10 ⁻⁵	<1.10-6		0,5	<u>17</u>	<u>1,0</u>	<u>96</u>	<u>3,0</u>
05/03	$3,1\cdot10^{11}$			<5·10 ⁻³		<6.10-5	<1.10-6	1.10-8	0,5	<u>26</u>	0,7	<u>29</u>	0,5
06/03	$1,9\cdot10^{11}$			<5·10 ⁻³			<1.10-6		<u>4,6</u>	<u>60</u>	<u>30</u>	<u>38</u>	<u>21</u>
07/03	$2,5\cdot10^{11}$	<4·10 ⁻³	<5·10 ⁻³	<5·10 ⁻³	4.10^{-2}				1,6	<u>16</u>	<u>3,4</u>	<u>26</u>	<u>3,0</u>
08/03	$2,3\cdot10^{11}$	<4·10 ⁻³	<5·10 ⁻³	<5·10 ⁻³	2.10^{-2}	<6.10-5	<1.10-6	1.10-8	0,2	1,0	0,2	<u>33</u>	3,0
09/03	$2,1\cdot10^{11}$	<4.10-3	<5·10 ⁻³	<5·10 ⁻³	3.10^{-3}	<6.10-5	<1.10-6	1.10-8	0,1	<u>12</u>	0,1	<u>12</u>	<u>2,0</u>

Из результатов анализа следует, что такие показатели качества препарата, как объемная активность, содержание β - и некоторых γ - радиоактивных примесей, соответствовали ТУ. Содержание α -излучателей и стабильных примесей (кроме марганца) в препарате превышало требования на порядок. Поэтому с целью достижения требуемого качества препарата ⁹⁹Мо осуществляли его двойную переочистку в Φ ЭИ.

В целом, отмечено заметное улучшение показателей технологического процесса по сравнению с результатами предшествующих опытных операций. Так, был значительно повышен технологический выход целевого компонента и несколько улучшено качество препарата. В данный период генераторы с 99 Мо, произведенным на Φ ГУП «ПО «Маяк», были впервые поставлены в клиники России.

Тем не менее, достигнутое качество не удовлетворяло требованиям фармакопеи. После окончания договора на поставку препарата в Φ ЭИ производимый на Φ ГУП «ПО «Маяк» концентрат ⁹⁹Мо остался невостребованным.

Поэтому в дальнейшем в качестве альтернативы было принято решение о разработке принципиально нового технологического процесса, позволяющего концентрировать ⁹⁹Мо из большого объема исходного раствора мишени (до 10 л), увеличить производительность процесса и обеспечить стабильный выход и качество препарата. Как представлялось, этого можно было достичь при переходе на экстракционную технологию.


Подраздел 3 посвящен результатам разработки технологии экстракционного выделения и концентрирования 99 Мо из раствора облученной мишени.

Первоначально в лабораторных исследованиях для экстракционного варианта выделения и очистки Мо в качестве экстрагента использовали органический раствор Д2ЭГФК в парафине (C_{13}). Однако, позже было принято решение ввести в экстрагент ТБФ в качестве солюбилизатора, обеспечивающего эффективное расслаивание эмульсии. Кроме этого, было установлено, что ТБФ подавляет экстракцию Мо и ряда экстрагируемых Д2ЭГФК примесей, но синергетно повышает извлечение U, что положительно отражается на разделении U и Мо при реэкстракции и очистке последнего.

В результате был предложен новый технологический процесс, включающий стадии азотнокислого растворения мишени, фильтрации раствора мишени, экстракционного концентрирования Мо на каскаде центробежных экстракторов, сорбционной и сублимационной очистки концентрата 99 Мо.

Принципиальная технологическая схема стадии экстракционной переработки осветленного раствора мишени изображена на рисунке 2 (A).

Экстракционный каскад был скомпонован из одноступенчатых экстракторов типа ЭЦР-33. Приводы аппаратов ЭЦР-33 были вынесены в ремонтную зону и соединялись с экстракторами с помощью гибких валов (рисунок 2 (Б)).

А| K | – корректор; N | – центробежный экстрактор; N | – емкость для приема / выдачи растворов; --- - поток органической фазы; —— - поток водной фазы.

Рисунок 2 – Принципиальная технологическая схема (A) и внешний вид (Б) экстракционного каскада

На ступенях 1-6 экстракционного каскада осуществляли экстракцию целевых компонентов с концентрированием в 6-9 раз. Органическую фазу (13,5 % Д2ЭГФК и 13,5 % ТБФ в C_{13}) дозировали на 1 ступень каскада, в 6 ступень – исходный раствор, а в 7 ступень – промывной раствор 1 (7 моль/л HNO_3) для промывки экстракта. Рафинат выводился из 1 ступени. Промытый экстракт самотеком поступал из 7 ступени в зону реэкстракции Mo.

На 8-13 ступенях происходила селективная реэкстракция Мо. Для этого в 11 ступень дозировали раствор комплексообразователя (6 моль/л H_2O_2 , 5 моль/л HNO_3), а в 13 — промывной раствор 2 (0,1 моль/л HNO_3).

Из 8 ступени реэкстракт Мо, сконцентрированный в 25 - 60 раз, самотеком выводился в накопительную емкость, откуда его передавали на аффинажные операции, либо он самотеком шел по линии рефлакса в 5 ступень головного блока для повышения степени очистки от сопутствующих примесей.

Экстракт U из ступени 13 поступал в зону реэкстракции U, реализованную на ступенях с 14 по 17. При этом реэкстрагент U (50-70~г/л карбоната метиламина - (CH₃NH₂)₂·H₂CO₃, 20 г/л ДТПА) дозировали в 17 ступень, а из 14 ступени в приемную емкость выводился реэкстракт U.

Регенерацию оборотного экстрагента осуществляли на 18 и 19 ступенях раствором 2 моль/л HNO₃, который дозировали в последнюю ступень каскада.

С последней ступени экстракционного каскада происходил слив оборотного экстрагента в аппарат-сборник, откуда он вновь подавался на 1-ю ступень каскада.

Работа экстракционного каскада включала пять фаз:

- 1) пуск экстракционного каскада и вывод его на режим;
- 2) переработка раствора блока с концентрированием Мо;
- отмывка концентрата Мо от сопутствующих примесей при рефлаксировании реэкстракта Мо;
- 4) вытеснение Мо из первого и второго экстракционных каскадов с выводом реэкстракта Мо в приемную емкость;
- 5) отмывка экстракционного каскада, остановка.

После переработки раствора мишени проводили операцию разрушения H_2O_2 в реэкстракте Мо при температуре от 85 °C до 95 °C. Далее реэкстракт Мо после корректировки концентрации HNO_3 подавали на аффинажные переделы.

Испытания экстракционной технологии переработки раствора мишени включали операции на модельных и реальных растворах облученных блоков.

При переработке имитационных растворов экстракционный каскад функционировал в режиме рефлаксирования Мо. При этом была показана возможность повышения степени очистки концентрата Мо от Al, Hg и U при рефлаксировании реэкстракта Мо. Сброс Мо в первичный рафинат, произведенный на этапе переработки раствора блока, составил до 12 %. Далее, в фазах отмывки реэкстракта Мо, при его рефлаксировании и вытеснении реэкстракта Мо со второго блока, сброс компонента во вторичный рафинат составил около 20 %. Выход Мо в реэкстракт достиг 60 %.

В свою очередь, в реэкстракт U выделено около 80 % от содержания компонента в исходном растворе.

В ходе переработки облученных блоков не удалось добиться стабильной работы экстракционного каскада в режиме рефлаксирования реэкстракта Мо. В этом случае значительное количество целевого компонента сброшено в рафинат. Поэтому в дальнейшем экстракционный каскад был переключен в режим «прямой» наработки реэкстракта Мо, без его рефлаксирования. В данном варианте работы экстракционного каскада в реэкстракт выделено от 60 % до 90 % Мо при концентрировании в 10 раз и коэффициенте очистки от примесей $> 10^4$.

Тем не менее, продолжительность стадии экстракционного концентрирования была чрезмерной и достигала 15 ч. Это было обусловлено принятой скоростью подачи исходного раствора на каскад 1,5 л/ч и необходимостью проведения операции вытеснения реэкстракта Мо со второго блока.

Таким образом, на данном этапе работы не удалось продемонстрировать преимущества экстракционной технологии и достичь глубокой очистки концентрата Мо по причине отключения рефлаксирования реэкстракта Мо через головной блок.

Кроме этого, очевидным недостатком экстракционной технологии, по сравнению с сорбционным вариантом концентрирования, являлась сложность аппаратурного оформления, управления и обслуживания процесса.

В итоге принято решение об осуществлении дальнейшего развития технологии производства ⁹⁹Мо на основе сорбционного варианта переработки раствора блока и первичного концентрирования Мо с использованием сорбента Т-5.

Подраздел 4

содержит результаты лабораторных и промышленных экспериментов по разработке сорбционной технологии наработки препарата ⁹⁹Мо на основе неорганического сорбента Т-5. Предполагалось, что использование данного сорбционного материала позволит сократить продолжительность переработки раствора мишени, сжать объёмы растворов и обеспечить стабильный выход и качество препарата. К тому времени все ранее используемые на установке сорбционные материалы были сняты с производства.

Лабораторные исследования проводились в следующих направлениях:

- изучения влияния термообработки на растворимость и сорбционные характеристики сорбента T-5 по отношению к Мо;
- выбора условий проведения сорбционных циклов (геометрии сорбционной колонки, скорости фильтрации растворов на стадиях сорбции и десорбции, влияние концентрации щелочи на степень десорбции Мо);
 - предотвращения загрязнения концентрата Мо матрицеобразующими элементами;
 - определения ресурса работы сорбента Т-5;
 - исследования поведения некоторых у-активных примесей в сорбционном процессе;
- комплексной проверки двухцикличной сорбционной схемы выделения Мо с использованием неорганического сорбента Т-5 на имитационном растворе.

Результаты выполненных лабораторных исследований позволили рекомендовать параметры и условия реализации двухцикличного технологического процесса выделения ⁹⁹Мо из раствора блока на основе неорганического сорбента Т-5 (таблица 4). Для реализации данной технологии не потребовалось внесения существенных изменений в аппаратурное оформление уст. «М». Сорбционные циклы проводили на колоннах АТ-081 и АТ-082 с объемом сорбента 150 и 10 см³ (рисунок 1).

Проверку данного варианта технологии в реальных условиях осуществляли в ходе опытной операции (таблицы 5 и 6).

Из указанных данных видно, что препарат содержал значительное количество сопутствующих γ - примесей, в основном радиойод и 106 Ru.

Таблица 4 - Рекомендованные технологические параметры процесса выделения 99 Мо с использованием сорбента Т-5

		Параметры процесса				
Стадии процесса		Концентрация HNO ₃ (NaOH) в растворе, моль/л	Объем раствора, к.о.	Расход, к.о./ч		
	Промывка НОО3 перед					
	сорбцией	2,5-3,0	10 - 15			
1 цикл	Сорбция	3,0-4,0	50 - 70	15 - 25		
AT-081	Промывка НОО3	1,0-1,5	10 - 15			
	Промывка H ₂ O	_	10 – 15			
	Десорбция NaOH	(0,3-0,5)	15 - 20	3-5		
	Промывка HNO ₃ перед					
	сорбцией	0,01-0,1	10 - 15	55 – 65		
2 цикл	Сорбция	0,01-0,3	150 - 170	33 – 63		
AT-082	Промывка НОО3	0.01 - 0.1	10 – 15			
	Промывка Н ₂ О		10 – 15	15 – 25		
	Десорбция NaOH	(0,3-0,5)	15 - 20	3 – 5		

Таблица 5 — Распределение 99 Мо по технологическим продуктам

Тип продукта	Активность ⁹⁹ Мо на время анализа, Ки	Время, от по- ставки блока, ч	Выход ⁹⁹ Мо, %
Раствор блока	605	8,5	100
Фильтрат 1 цикла	<14,3	12,8	<2,5
Кислотная промывка	1,2	12,5	0,21
Водная промывка	0,1	13,7	0,018
Первая фракция десорбата 1 цикла	414	16	74
Фильтрат 2 цикла	34,6	23,7	6,7
Объединенная промывка	0,65	24,5	0,13
Первая фракция десорбата 2 цикла	304	31,3	64
Препарат	235	40,5	60

Таблица 6 – Содержание γ-активных компонентов в препарате ⁹⁹Mo, %

	Требования по	Содержание примесей в препарате (A / A_{Mo})				
Радионуклид	спецификации	На момент окончания	На предполагаемое			
	1 1 1 1 1	переработки	время отправки			
⁹⁹ Мо, Ки/мл	>1	$5,2\cdot 10^{10}(1,4)$	$3,2\cdot10^{10}(0,86)$			
¹³² Te	<4 · 10 ⁻³	<1,0 · 10 ⁻²	<1,0 · 10 ⁻²			
^{131}I	$< 5 \cdot 10^{-3}$	1	1			
^{132}I	<4 · 10 ⁻³	8 · 10 ⁻³	$2 \cdot 10^{-8}$			
¹⁰³ Ru	<5 · 10 ⁻³	<1 · 10 ⁻²	<1 · 10 ⁻²			
Другие ү-примеси	<5 · 10 ⁻³	$1 \cdot 10^{-1}$	$6 \cdot 10^{-1}$			
106Ru		$3 \cdot 10^{-1}$	$5 \cdot 10^{-1}$			
⁹⁵ Zr	Не регламенти-	$1 \cdot 10^{-2}$	$2 \cdot 10^{-2}$			
⁹⁵ Nb	руется	$7 \cdot 10^{-3}$	$1 \cdot 10^{-2}$			
^{133}I		2 · 10 ⁻¹	$7 \cdot 10^{-2}$			

В целом результаты опытной операции показали простоту реализации данной технологии. Тем не менее, поскольку приемлемого уровня очистки препарата достичь не удалось, очевидной являлась необходимость дополнения технологической схемы дополнительными переделами.

В заключительном **подразделе 5** приведены результаты лабораторных и промышленных экспериментов по доработке сорбционной технологии на основе неорганического сорбента Т-5 в направлении повышения качества очистки получаемого препарата ⁹⁹Мо.

Так, для реализации процесса осветления раствора мишени выбран патронный фильтр производства НПП «ЭКСПРЕСС-ЭКО». Также рассмотрены свойства импрегнированных сорбентов, катионо- и анионообменных материалов, наиболее селективных к Мо. Осуществлен поиск бессолевых реагентов для десорбции Мо с сорбента Т-5, что позволяет реализовать стадию сублимации Мо.

В результате, для повышения качества препарата было предложено включить в технологический процесс дополнительную стадию очистки на основе анионита Lewatit MP-500 в SO_4^{2-} - форме, а на заключительном этапе технологической схемы использовать стадию термической обработки препарата Мо (рисунок 3).

Данная схема была проверена в ходе опытных операций на модельных растворах, результаты которых показали возможность достижения технологического выхода Мо – 80 %. Обнаружены причины загрязнения препарата примесями Al, Fe и Cu. Как выяснилось, загрязнение продуктов на заключительных стадиях процесса в основном было связано с химической чистотой применяемых реагентов. Поэтому при выполнении последующих операций использовали реагенты только после специальной очистки.

На следующем этапе работы были проведены опытные операции на облученных урановых мишенях. Наработанный в результате одной из операций препарат был поставлен в ФЭИ для контроля качества.

Указанная операция по наработке препарата длилась около двух суток. Объемная активность 99 Мо в растворе мишени составила 43 мКи/см³, а в конечном продукте достигла 1,5 Ки/см³. В препарат выделено более 80 Ки 99 Мо, при этом технологический выход целевого компонента составил 54 %. Содержание контролируемых в препарате радионуклидов 131,132 I, 103 Ru, 132 Te и других γ -активных примесей было ниже существующих в ФЭИ требований.

Анализ содержания α -, β - и γ - активных и химических примесей в препарате осуществляли после его выдержки в течение около двух месяцев, после распада 99 Mo.

Контроль проб препарата ⁹⁹Мо в ФЭИ включал: исследование характеристик исходных растворов препарата ⁹⁹Мо, осуществление пробной зарядки генераторов радионуклида ^{99m}Тс номиналами от 5,5 до 18,5 ГБк, а также проведение элюирования препарата ^{99m}Тс из экспериментальных генераторов и оценку качества элюата на соответствие существующим требованиям.

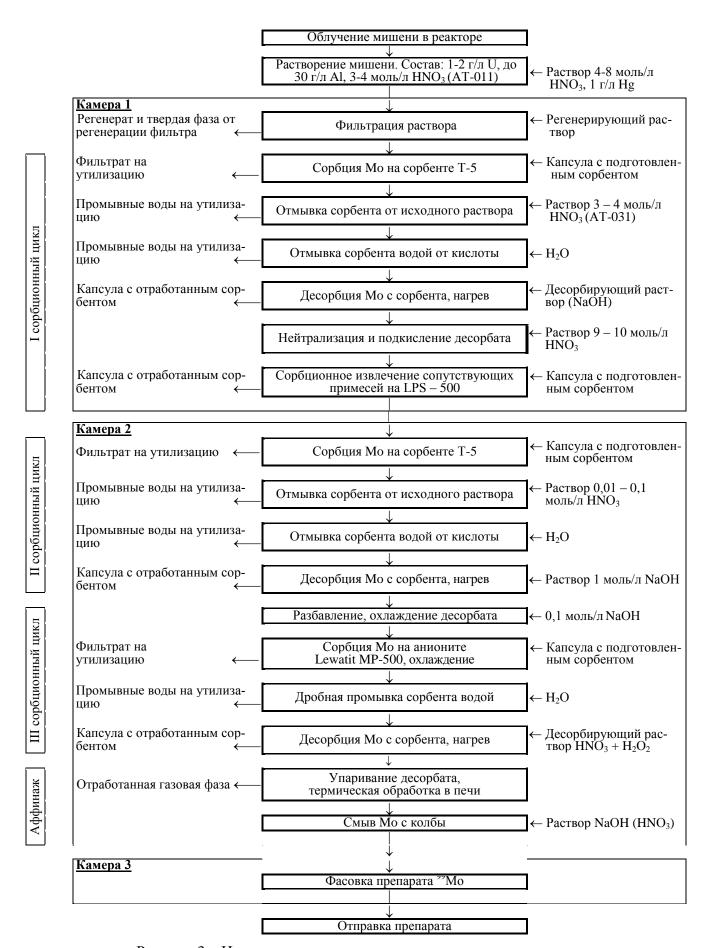


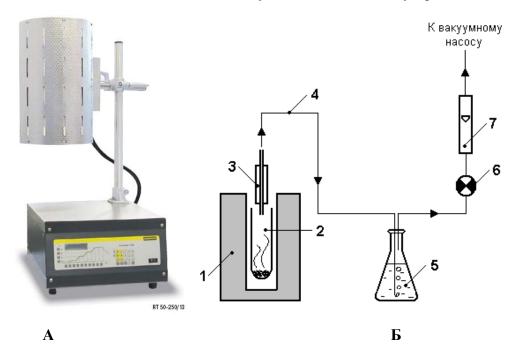
Рисунок 3 – Итоговая принципиальная технологическая схема

Из результатов анализов партий препарата 99 Мо, полученных в двух независимых организациях, установлено, что содержание основных γ - активных примесей (131 I, 132 I, 103 Ru и 132 Te), а также суммы остальных γ - излучателей полностью соответствуют существующим требованиям ФЭИ и Европейской фармакопеи. Активность радионуклидов 89 Sr и 90 Sr в препарате, определенная на ФГУП «ПО «Маяк», ниже предельных значений как минимум на порядок. Как в ФЭИ, так и на ФГУП «ПО «Маяк» в исследованных пробах препарата не зафиксировано присутствие α -излучающих радионуклидных примесей (содержание ниже пределов обнаружения).

Исследование химической чистоты партий препарата в обеих организациях показало повышенное содержание Al- от 2,6 до 20 мг/л, что превышает требования на препарат для $\Phi ЭИ$ (до 1 мг/л). Остальные контролируемые химические примеси не превысили установленных значений.

Следует отметить, что вследствие высокого содержания Al в используемой мишени, присутствие Al в препарате для ФГУП «ПО «Маяк» является наиболее критичным. Тем не менее, в отличие от российских требований зарубежные производители не контролируют содержание химических примесей в препарате Мо.

Радиохимическая чистота и внешний вид препарата соответствовали существующим требованиям. По заключению специалистов ФЭИ, в результате зарядки генераторов поставленным с ФГУП «ПО «Маяк» 99 Мо, и последующего их элюирования, показатели качества элюатов $^{99\text{m}}$ Тс, а именно относительное содержание 99 Мо и радиохимическая чистота, соответствовали установленным нормам. Содержание Al в элюатах находилось на верхнем предельном значении.


В связи с этим, на заключительном этапе диссертационной работы решали задачу надежного достижения фармакопейного качества препарата 99 Мо путем применения на конечной стадии технологического процесса сублимационной технологии, позволяющей доочищать Мо практически от всех присутствующих примесей путем перевода его в газовую фазу и последующего улавливания MoO_3 в холодильнике. На данном этапе работы осуществлен выбор типа печи, разработана конструкция реактора и определены оптимальные технологические параметры проведения процесса сублимации Mo.

Сублимационный процесс был реализован на трубчатой печи Nabertherm RT 50-250/13, внешний вид которой и принципиальная схема лабораторной установки представлены на рисунке 4.

В качестве материала реактора был выбран кварц, как наиболее доступный и инертный к Мо материал. При разработке конструкции реактора учитывались следующие требования:

- дешевизна и простота конструкции элементов (возможность изготовления или приобретения);
 - одноразовое использование емкости для приема и упаривания исходного раствора;
 - возможность многоразового использования холодильника;

- возможность дистанционной замены и обслуживания элементов устройства.

1 – трубчатая печь; 2 – кварцевая пробирка; 3 – холодильник; 4 – силиконовый шланг; 5 – барботер; 6 – регулирующий вентиль; 7 – ротаметр.

Рисунок 4 — Внешний вид трубчатой печи Nabertherm RT 50-250/13 (**A**) и принципиальная схема лабораторной установки для сублимации Мо (**Б**)

В качестве реактора было предложено использовать кварцевую пробирку со съемным холодильником, в конечном варианте представляющим собой простую кварцевую трубку с наполнителем.

В итоге был подобран режим, при котором исключалась потеря Мо в результате аэрозольного уноса и/или разбрызгивания раствора при упаривании в динамических условиях; проработаны условия проведения процесса: расположение реактора в печи и трубкихолодильника в реакторе, температурный режим, расход воздуха через холодильник, продолжительность процесса. Предложен динамический вариант смыва Мо с внутренней поверхности кварцевой трубки-холодильника. Также изучено влияние примесей (Na⁺) на процесс сублимации Мо.

Разработанный процесс сублимационной очистки Мо включал в себя следующие стадии:

- упаривание в динамических условиях исходного раствора десорбата Мо 3-го сорбционного цикла (рисунок 3) при 500 °C;
 - отгонку легколетучих примесей при температуре около 600 °C;
 - возгонку MoO₃ при температуре от 900 до 1200 °C и улавливание его в холодильнике;
 - смыв сконденсированного в холодильнике Мо щелочным раствором.

По результатам проведения исследований был рекомендован и испытан в условиях горячей камеры уст. «М» вариант реализации процесса сублимационной очистки Мо. Результаты испытаний продемонстрировали эффективность сублимационного выделения Мо при найденных условиях процесса. В данных экспериментах выход Мо в препарат составил от 80

до 100 %., а содержание химических примесей в препарате главным образом определялось только чистотой применяемых на данном этапе реагентов.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- 1. В результате выполнения комплекса лабораторных экспериментов и опытных операций на реальных растворах облученной мишени оптимизирована существующая к началу проведения работы технология. Это позволило впервые осуществить в 2003 году поставки произведенного на Φ ГУП «ПО «Маяк» концентрата ⁹⁹Мо в ГНЦ В Φ - Φ ЭИ (г. Обнинск) для изготовления генераторов ^{99m}Тс и дальнейшей поставки их в клиники России.
- 2. Рассмотрен альтернативный экстракционный вариант концентрирования и очистки Мо с использованием экстракционных систем на основе Д2ЭГФК и ТБФ в углеводородном разбавителе. Данный процесс реализован в горячей камере уст. «М» на каскаде центробежных экстракторов ЭЦР-33. В ходе производственных испытаний подтверждена принципиальная работоспособность экстракционной технологии, однако не удалось продемонстрировать ее преимуществ. В результате принято решение дальнейшее развитие технологии производства ⁹⁹Мо на ФГУП «ПО «Маяк» осуществлять на основе сорбционного варианта переработки раствора блока и первичного концентрирования Мо с использованием сорбента Т-5.
- 3. Разработана и испытана в производственных условиях принципиально новая сорбционная технология на основе неорганического сорбента Т-5. Продемонстрирована простота реализации технологии, а также возможность сокращения продолжительности технологического процесса.
- 4. Осуществлена доработка двухцикличной сорбционной схемы на основе сорбента Т-5 путем включения дополнительных стадий анионообменной очистки на анионите Lewatit MP-500 и термической обработки препарата. Результаты производственных испытаний вновь разработанного варианта технологической схемы продемонстрировали возможность получения препарата ⁹⁹Мо фармакопейного качества, соответствующего требованиям зарубежных производителей, что подтверждено специалистами ФЭИ при пробной зарядке генераторов ^{99m}Tc.

С целью надежного достижения препарата фармакопейного качества разработан и реализован на заключительной стадии технологической схемы принципиально новый сублимационный процесс, позволяющей очищать Мо практически от всех присутствующих примесей.

Список публикаций по теме диссертации

Патенты на изобретение:

- 1 М.В. Логунов, Н.Д. Бетенеков, Л.М. Шарыгин, **Ю.А. Ворошилов**, К.В. Бугров и др. Способ получения концентрата радионуклида ⁹⁹Мо. Патент на изобретение № 2288516. Опубликовано 27.11.2006, Бюл. № 33.
- 2 В.Е. Баулин, А.Н. Усолкин, Н.Г. Яковлев, **Ю.А. Ворошилов** и др. Состав экстракционно-хроматографического материала для селективного извлечения ⁹⁹Мо из облученного уранового топлива. Патент на изобретение № 2489501. Опубликовано 10.08.2013, Бюл. № 22.
- 3 А.А. Мурзин, Б.Я. Зильберман, Н.Д. Голецкий, М.В. Логунов, **Ю.А. Ворошилов** и др. Способ извлечения ⁹⁹Мо из раствора облученных урановых мишеней. Патент на изобретение № 2545953. Опубликовано -10.04.2015, Бюл. № 10.
- 4 Логунов М.В., **Ворошилов Ю.А.**, Мурзин А.А., Денисов Е.И. Бугров К.В. и др. Способ получения препарата 99 Мо. Патент на изобретение № 2560966. Опубликовано 20.08.2015, Бюл. № 23.

Список публикаций в рецензируемых журналах:

- 1 Разработка технологии выделения радионуклида ⁹⁹Мо на основе неорганического сорбента «Термоксид Т-5» / **Ю.А. Ворошилов**, М.В. Логунов, С.И. Ровный, Н.Д. Бетенеков, Е.И. Денисов, Л.М. Шарыгин и др. // Вопросы радиационной безопасности. 2008, № 2 (50), с. 16-25.
- 2 Разработка технологии производства препарата ⁹⁹Мо на ФГУП «ПО «МАЯК» / К.В. Бугров, **Ю.А. Ворошилов**, В.С. Ермолин, М.В. Логунов, С.А. Лукин, О.Н. Макаров, С.В. Фадеев, Н.Г. Яковлев и др. // Вопросы радиационной безопасности. 2014, № 1 (73), с. 3-15.
- 3 Кислотные фосфорилподанды как компоненты сорбентов импрегнированного типа для выделения ⁹⁹Мо из азотнокислых растворов / В.Е. Баулин, О.В. Коваленко, А.Н. Туранов, В.К. Карандашев, А.Н. Усолкин, Н.Г. Яковлев, **Ю.А. Ворошилов**, А.Ю.Цивадзе // Радиохимия. 2015, № 1 (57), с. 53-59.
- 4 Разработка и испытания процесса экстракционного извлечения ⁹⁹Мо из растворов облученных урановых мишеней / Н.Д. Голецкий, Б.Я. Зильберман, М.В. Логунов, **Ю.А. Ворошилов**, В.С. Ермолин и др. // Радиохимия. 2015, № 3 (57), с. 247-259.
- 5 Исследование межфазного распределения иода в процессе получения концентрата ⁹⁹Мо / Е. И. Денисов, Н. Д. Бетенеков, М. В. Логунов, **Ю.А. Ворошилов** // Радиохимия. 2017, № 4 (59), с. 331-339.

Список публикаций в сборниках тезисов конференций включает 16 работ, из них:

1 Освоение сорбционной технологии получения препарата ⁹⁹Мо на ПО «Маяк». – Четвертая Российская конференция по радиохимии, Бугров К.В., **Ворошилов Ю.А.**, Глаголенко Ю.В., Клемакова А.Г.. Логунов М.В., Лызлов П.С., Мозин В.В., Пятин Н.П., Ровный С.И.,

- Светлаков В.И., Скобцов А.С., Трифонов О.И., Яковлев Н.Г. / Радиохимия 2003, г. Озерск, 2003 год.
- 2 Изучение поведения ⁹⁹Мо и основных сопутствующих γ-активных примесей в сорбционном процессе с использованием неорганического сорбента «Термоксид Т-5», Логунов М.В., **Ворошилов Ю.А.**, Воронова М.П и др. / Всероссийская конференция «Актуальные проблемы физической химии твёрдого тела», г. Екатеринбург, 2005 год.
- 3 Разработка технологии извлечения ⁹⁹Мо из облученных урановых мишеней, Н.Д. Бетенеков, Е.И. Дненисов, Л.М. Шарыгин, М.В. Логунов, **Ю.А. Ворошилов** и др. / Пятая Российская конференция по радиохимии «Радиохимия-2006» г. Дубна, 2006 год.
- 4 Baulin V.E., Kovalenco O.V., **Voroshilov Y.A.** Investigation of the sorbents on the basis of the new phosphoryl-containing ligands for allocation, concentration and purification of the molybdenium from the irradiated uranium targets. 7th International Symposium on Technetium and Rhenium Science and Utilization Moscow, 2011. P.147.
- 5 Поиск вариантов десорбции молибдена с сорбента Термоксид Т-5, К.Е. Парфентьева, Ю.А. Уткина, **Ю.А. Ворошилов**, М.В. Логунов и др. / Материалы Российской научно-практической конференции с международным участием «Актуальные проблемы радиохимии и радиоэкологии», г. Екатеринбург, 2011 год.
- 6 Разработка технологии изготовления и практического применения импрегнированных сорбентов на основе фосфорилсодержащих подандов для выделения Мо-99 из облученных урановых материалов, Баулин В.Е., Коваленко О.В., Усолкин А.Н., **Ворошилов Ю.А.**, Яковлев Н.Г., Цивадзе А.Ю. / Седьмая Российская конференция по радиохимии «РАДИОХИ-МИЯ-2012», г. Димитровград, 2012 год.
- 7 Разработка высокопроизводительного процесса экстракционного концентрирования ⁹⁹Мо из растворов облученных урановых блоков, Н.Д. Голецкий, Б.Я. Зильберман, А.С. Кудинов, И.В. Блажева, А.А. Мурзин, М.С. Агафонова-Мороз, М.В. Логунов, **Ю.А. Ворошилов**, Н.Г. Яковлев, К.В. Бугров, О.Н. Макаров. / Первая Российская конференция по медицинской химии (MedChem Russia-2013), г. Москва, 2013 год.

Автор выражает благодарность специалистам ЦЗЛ, завода 235 и других подразделений ФГУП «ПО «Маяк», научным сотрудникам УрФУ и АО РИ за помощь и свой вклад в работу, возможность представления результатов совместных трудов.